A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

Authors

  • A. Aminataei Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box: 16765-3381, Tehran, Iran
  • M. H. Derakhshan Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box: 16765-3381, Tehran, Iran
Abstract:

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential equations with constant coefficients subject to initial conditions based on the fractional order Chebyshev functions that this function is defined as follows:\begin{equation*}\overline{T}_{i+1}^{\alpha}(x)=(4x^{\alpha}-2)\overline{T}_{i}^{\alpha}(x)\overline{T}_{i-1}^{\alpha}(x),\,i=0,1,2,\ldots,\end{equation*}where $\overline{T}_{i+1}^{\alpha}(x)$ can be defined by introducing the change of variable $x^{\alpha},\,\alpha>0$, on the shifted Chebyshev polynomials of the first kind. This new method is an adaptation of collocation method in terms of truncated fractional order Chebyshev Series. To do this method, a new operational matrix of fractional order differential in the Hilfer sense for the fractional order Chebyshev functions is derived. By using this method we reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem. At the end of this paper, several numerical experiments are given to demonstrate the efficiency and accuracy of the proposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Existence results for hybrid fractional differential equations with Hilfer fractional derivative

This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.

full text

Solving Linear and Nonlinear Fractional Differential Equations Using Spline Functions

and Applied Analysis 3 Ramadan introduced in 19 the solution of the first-order delay differential equation of the form: y′ x f ( x, y x , y ( g x )) , a ≤ x ≤ b, y a y0, y x Φ x , x ∈ a∗, a , a∗ < 0, a∗ inf { g x : x ∈ a, b , 2.4 using the spline functions of the polynomial form, defined as SΔ x Sk x Sk−1 xk r ∑ i 0 M i k x − xk i 1 i 1 ! , 2.5 where M i k f i xk, Sk−1 xk , Sk−1 g xk , with S−...

full text

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

full text

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

full text

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

full text

An approximate method for solving fractional system differential equations

IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 09  issue 04

pages  267- 280

publication date 2020-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023